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Abstract: Large networks are quintessential to bioinformatics, knowledge graphs, social network
analysis, and graph-based learning. CompositeView is a Python-based open-source application that
improves interactive complex network visualization and extraction of actionable insight. Compos-
iteView utilizes specifically formatted input data to calculate composite scores and display them
using the Cytoscape component of Dash. Composite scores are defined representations of smaller
sets of conceptually similar data that, when combined, generate a single score to reduce information
overload. Visualized interactive results are user-refined via filtering elements such as node value
and edge weight sliders and graph manipulation options (e.g., node color and layout spread). The
primary difference between CompositeView and other network visualization tools is its ability to
auto-calculate and auto-update composite scores as the user interactively filters or aggregates data.
CompositeView was developed to visualize network relevance rankings, but it performs well with
non-network data. Three disparate CompositeView use cases are shown: relevance rankings from
SemNet 2.0, an open-source knowledge graph relationship ranking software for biomedical literature-
based discovery; Human Development Index (HDI) data; and the Framingham cardiovascular study.
CompositeView was stress tested to construct reference benchmarks that define breadth and size of
data effectively visualized. Finally, CompositeView is compared to Excel, Tableau, Cytoscape, neo4j,
NodeXL, and Gephi.

Keywords: CompositeView; link prediction; HeteSim; SemNet; biomedical knowledge graph; net-
work analysis; concept relatedness

1. Introduction

The definition of “data visualization” can be as broad as the field itself. Per Tableau,
one of many data visualization companies specializing in interactive visualization software,
data visualization is “the graphical representation of information and data”, an admittedly
broad, yet fitting, definition [1]. Friendly defines data visualization as “information which
has been abstracted in some schematic form, including attributes or variables for the
units of information” [2]. According to Ware, data visualization, as we know it today, is
defined as “a graphical representation of data or concepts . . . an external artifact supporting
decision making” [3]. For the purposes of this work, which develops the software tool
CompositeView, data visualization is defined as the process of taking complex data and
representing it in an interactive, composite manner. As suggested by the tool name,
a composite view effectively mitigates information overload, which otherwise clouds
actionable insight.

A large number of data visualization tools exist. Some are more general-purpose,
such as Microsoft Excel and Tableau [4], and others are more specific, such as the network
visualization program, Gephi [5]. Many programs are available to simply visualize data
where a user predefined the attributes. However, some data sets are so large and complex
that simply visualizing data under predefined attributes results in information overload;

Big Data Cogn. Comput. 2022, 6, 66. https://doi.org/10.3390/bdcc6020066 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc6020066
https://doi.org/10.3390/bdcc6020066
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-3570-6826
https://doi.org/10.3390/bdcc6020066
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc6020066?type=check_update&version=1


Big Data Cogn. Comput. 2022, 6, 66 2 of 32

that is, there is simply too much data to meaningfully acquire actionable insight. For
example, imagine a network with so many nodes and edges that it simply becomes an
entanglement of chaotic lines on the screen. Manual filtering or post-analysis can assist, but
it is a slow, tedious process that requires multiple subjective decisions by the domain user.

Here we develop CompositeView, an open-source Python-based data visualization
tool, to assist domain specialists in deriving actionable insights from large, complex data
sets that can be visualized in network form. CompositeView was originally inspired by link
prediction and relevance scoring methods [6], but was generalized for a greater breadth
of data. The key gap filled by CompositeView is the ability to automatically calculate and
update composite scores as the user simultaneously interacts with the data. Composite
scores are defined representations of smaller sets of conceptually similar data that, when
combined, generate a single score. Interactive composite scoring and corresponding vi-
sualization greatly decreases information overload in complex network or non-network
data, enabling effective and efficient actionable insight [7]. Interactive composite scoring
also provides a pivotal quantitative metric to further optimize user filtering and visualiza-
tion. By contrast, built-in interactive composite scoring is not currently available in other
generalist visualization tools or even specialist network visualization tools.

The remainder of the Introduction section provides the necessary background, mo-
tivation, and design criteria for CompositeView. The Methods section details how Com-
positeView was constructed and how it is used, including a stress testing analysis for
CompositeView’s data handling, processing, and efficiency. The Results section illus-
trates three distinct data set examples visualized with CompositeView: results from a
SemNet [8,9] biomedical knowledge graph analysis of the two target nodes AD and hy-
pothyroidism, Human Development Index (HDI) data [10], and cardiovascular disease
(CVD) data [11]. Two of these three examples are completely removed from the study of
networks, and the example involving HDI data is not strictly related to biomedical sciences.
The choice of these data is intentional, as they are both simple to understand and useful for
showcasing the potential power of CompositeView as a flexible and accessible visualization
tool for disparate domains. The Results section also illustrates baseline stress testing of
CompositeView’s data handling and processing speeds. The Discussion compares Com-
positeView to other visualization tools and elaborates on limitations and future directions.
Six visualization tools ranging from least to most similar to CompositeView are compared
and contrasted: Microsoft Excel, Tableau, Cytoscape, neo4j, NodeXL and Gephi.

1.1. Background

The field of computational biology has grown tremendously in the last 50 years, due in
many parts to the growth of both computational power and vast biological data sets [12,13].
The culmination of these advancements peaks at the intersection of biology and network
analysis, where biological systems are investigated through the use of networks and graph
theory [14]. Generally, the networks studied in computational biology model discrete
biomedical entities as nodes/vertices/points and the relationship between entities as
edges/links/lines [15]. These networks can be broadly categorized as either undirected or
directed graphs, where directionality is determined by whether the ordering of a connected
pair of nodes is significant. Networks can also have weight values associated with edges,
where the weight will often indicate the relevance of the pairwise node connection, and
degree values associated with nodes, where degree (or in-degree and out-degree, with
directed graphs) corresponds to the number of edges a node has.

Given the high degree of integration between computational biology and network
science, the abstract nature of biological networks has been condensed into more concrete
network types that have specialized uses. A few of the many types of biological networks
include protein–protein interaction networks, genetic interaction networks, metabolic net-
works, drug-target networks, and literature co-occurrence networks, among others [16].
The first layer of insight from these networks can be obtained through both their proper-
ties as graphs and their overall structural patterns. The observation of these properties
and patterns, such as graph density, graph isomorphism, clustering coefficients, node
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centrality, network motifs, and others, can, in many ways, provide valuable insight on the
internal organization of a biological network and elucidate the constraints responsible for
the functional protein, as well as metabolic, regulatory, and genetic systems observed in
nature [17,18]. More nuanced approaches used for gaining insight from networks include
the utilization of network-based modeling, ranging from network-structure-oriented meth-
ods, such as network centrality, network propagation, and structural similarity-based link
prediction, to machine learning (classification, clustering, etc.) and deep learning (neural
network) algorithms.

Link prediction and similarity scoring, methods which are used for discovering poten-
tial relationships between objects within a network exist at the very cutting edge of biologi-
cal network science and have a variety of real-world applications. Link prediction is the
catch-all term for analytical tasks that can reveal unknown relationships between entities in
a graph with some level of quantifiable confidence. The existence of proposed edges can be
determined using a variety of methods, such as topological similarity measures (using the
way nodes and edges, along with inherent properties, are specifically arranged within a net-
work to gain insight) such as the Jaccard Index [19], the Sorensen Index [20], the CAR-based
Common Neighbor Index [21]; cosine similarity, probabilistic, and maximum likelihood
methods, such as those proposed by Wang et al. [22], Yu et al. [23], and Guimerà et al. [24];
and embedding-based methods, such as DeepWalk [25], Node2vec [26], and HARP [27,28].
One application of link prediction, drug discovery, is the practice of using networks to
discover potential connections between drugs and other drugs, proteins, diseases, genes,
or alternative concepts of interest [29]. For example, link prediction was recently used to
discover and suggest repurposed drugs for the novel COVID-19 virus using data from older
coronavirus pandemics and a small subset of COVID-19 data to identify similarities [6].
Another practical example of link prediction and relevance measures in action comes from
the analysis of literature co-occurrence networks and knowledge graphs. These networks
are built from relationships between entities extracted from text corpora, large bodies of
structured text such as PubMed, PubMed Central, or Wikipedia [17]. Literature-based
discovery (LBD), a field that aims to extract insight from existing literature-based sources
and generate new connections between existing knowledge, is a prime example of an area
of study that can use literature co-occurrence networks, knowledge graphs, link prediction,
and relevance measures to great effect.

1.2. Motivation

SemNet is a software tool developed to conduct LBD on an expansive heteroge-
neous information network (knowledge graph) constructed from the Semantic Medline
Database (SemMedDB) [8,9]. This database is, essentially, a table containing text-mined
subject-predicate-object triples, extracted from article abstracts within PubMed, that
convey some sort of relationship between biomedical concepts [17]. Given the expansive
nature of PubMed, the knowledge graph used by SemNet is quite large, at approximately
20,000,000 edges and 300,000 nodes (where nodes represent concepts and edges represent
relationships between concepts). SemNet enables LBD by employing the power of the
HeteSim similarity metric, a metapath-based relevance measure used to determine the
similarity of two objects within a heterogeneous information network [30]. The practical
implication of this is, given two concepts (referred to as nodes) within the SemNet knowl-
edge graph, the relatedness of these nodes can be computed and compared. In practice,
SemNet has been used for hypothesis generation by first identifying a node of interest
within the knowledge graph (target node), then determining all connected nodes (source
nodes) of some specified distance away from the target within the graph, and finally
ranking these source nodes in respect to the target node by their aggregate HeteSim
similarity score. As a brief aside, because HeteSim is calculated on a per-metapath basis,
and source and target nodes are often connected by multiple metapaths, the aggregation
of HeteSim scores is necessary for a combined relevance value derived from multiple
metapaths. This aggregation is typically the arithmetic mean of all HeteSim values;
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however, other aggregation methods (specifically randomized aggregation, in SemNet
2.0) have been used successfully [9].

As practical studies using SemNet become more complex, a new problem involving
complexity creep and information overload arises: the results of network analysis can
become overly difficult to interpret for practical use. This is a phenomenon that can be
observed when combining multiple uses of SemNet into a single, comprehensive analysis
of multiple targets of interest. Take the combined study of Alzheimer’s disease (AD) and
hypothyroidism, for example. Each run of SemNet will identify a set of source nodes of a
specified distance away from a target node within the knowledge graph and calculate the
aggregate HeteSim score for each source–target pair. Each node in the set of connecting
source nodes now has a relevance measure associated with a specific target, which allows
the sources to be ranked. To instead study the source nodes that are connected to both
targets at once, an intersection of the two sets of previously discovered source nodes
is taken, and the new set of nodes is ranked against the two targets, respectively. This
generates two sets of results that, when studied directly, could take valuable time to analyze
and gain actionable insight. CompositeView, the main tool described in this work, is a data
visualization software that aims to improve the interpretability of such data by translating
algorithmic discovery into actionable insight using the power of network visualization
techniques and interactive data visualization.

To show how CompositeView realizes this definition of data visualization, the
proposed example described above involving the SemNet analysis of AD and hypothy-
roidism will be continued. In this example, the SemNet results are visualized as a new
graph where source and target nodes are related by the newly proposed connections
(modeled as edges). The aggregate HeteSim score associated with each source and target
connection is assigned as an edge weight in the graph. The two aggregate HeteSim
scores associated with each source node in the set of shared source nodes (one score for
each source–target relationship, of which there are two per source node) are combined
into a single value. This value is the composite score, which is subsequently assigned to
the source node in the visualization. How this composite score is calculated depends on
the context of the results being visualized. In terms of SemNet, the composite score is the
arithmetic mean of all outgoing edges connected to each source node. This composite
score condenses information into a joint metric that, though less informative overall, can
convey insight from the data in a way that justifies the drawbacks of minimal informa-
tion loss. In the context of the two targets in the example above, the composite score
associated with each source node conveys its relatedness to both AD and hypothyroidism
simultaneously. Ultimately, the graph, edge weights, and composite score come together
to form the backbone of CompositeView and define its core approach to visualizing
data. This foundation is subsequently expanded upon using network layout algorithms,
interactive components, and a web application framework to generate a comprehensive
data visualization tool.

Beyond SemNet, other network analysis methodologies can encounter situations
where the communication of data needs improvement. For example, take the study con-
ducted by Timilsina et al. where a heat diffusion algorithm is applied to a two-layer network
created using genetic interaction databases (STRING and BioGRID) to discover potential
associations between tumor samples and genes [31]. An example scenario where Com-
positeView could be helpful is when multiple genes are potentially predicted for multiple
tumors. If researchers want to take their analysis a step further and understand how each
gene interacts with multiple tumors using a single value, a composite score methodology
could be formulated and applied to each source node. The integration of CompositeView
into the existing network analysis pipeline could prove useful for communicating the large
amount of data produced whether for hypothesis generation or validation.

Another instance where CompositeView could improve network analysis pipelines
comes in the form of DICN, a similarity-based link prediction method described in
Zareie et al. [32]. Though not strictly a tool that generates a ranked list of nodes (such
as SemNet), other pipelines that implement DICN could conceivably use it for this pur-
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pose. For practical applications of DICN where multiple sets of nodes are compared to
multiple individual nodes, especially when studying social networks, ecological networks,
airport traffic networks, or co-authorship networks (all experimental networks mentioned
in Zareie et al.), among others, the integration of CompositeView could reduce the time
required to interpret results as well as introduce an interactive element that expands the
potential for insight from the results themselves.

As a final practical use case, take the Optimal Vascular Care measure [33]. This is a
composite score of four patient goals that, when reached together, represent a gold standard
for managing vascular disease. Though not strictly a network-based method, the practical
use of the Optimal Vascular Care measure could take advantage of CompositeView by mod-
eling patients as source nodes, the four goals as target nodes, the adjusted measurements
as edge weights, and management goal status as node groupings.

1.3. Design Criteria

During the design process of CompositeView, key features were noted and will be
listed in order from most to least important in the design hierarchy. These key features
are a result of experimenting with multiple ways of visualizing composite score data
(using different types of charts, graphs, etc.) as well as general SemNet user feedback.
CompositeView was originally designed to visualize SemNet results, so users of SemNet
would suggest features that would make the interpretation of results more intuitive. This
feedback was then expanded upon after generalizing CompositeView, and additional
feedback was used in feature selection when discussing how to visualize more general
composite score data.

First, CompositeView provides clean, easily readable data visualization; with it being
a visualization tool, ensuring the data is communicated effectively is the first priority.
CompositeView originates from the study of networks, so adopting common network
visualization techniques, such as node and edge representation, node and edge sizing, and
aesthetic network layouts is a natural translation for communicating the data (as opposed
to more standard plotting). Network layout is a key problem in network visualization,
and because classic network layout algorithms perform relatively poorly when visualizing
disparate clusters of nodes individually connected to multiple targets, a new method has
been formulated for CompositeView’s specific data input.

Next, CompositeView is designed to accommodate multiple sets of data (originally in
the form of SemNet results), so a composite scoring functionality is key for communicating
the overall relatedness of data points. Composite scores, in CompositeView’s current state,
are calculated using the arithmetic mean of all outgoing edge weights associated with
each respective source node in the network. The use of arithmetic mean (as well as the
source and target node terminology) is an artifact of CompositeView’s SemNet origins;
however, the visualization of HDI and CVD data described in later sections specifies how
the combination method can be altered based on the data and ranking criteria.

Third, CompositeView expands upon the provided data by being interactive, specifi-
cally through the use of a filtering and graph manipulation functionality. Filtering entails
node, edge, and type (nodes can be assigned types or groups) selection by employing
range sliders and dropdown components. Range sliders allow value bounds to be set
that enable or disable the inclusion of nodes and edges based on their assigned value
(composite score and edge weights, respectively), and dropdowns allow specific named
nodes and types to be selected for unique visualization. Changing the inclusion of edge
information specifically will change the composite score associated with each source node.
Graph manipulation encompasses all interactivity that facilitates customized visualizations
through color changes, layout adjustments, simulation iterations (which affect network
layout), and node and edge sizing.

The final design criterion is that CompositeView be both accessible and flexible for a
variety of unique situations. This final feature is less tangible, but a necessity, nonetheless.
During software development, specific tools were chosen because they are inherently well
integrated and simple to use. CompositeView has an internally modular design, which
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gives it the ability to exist in a relatively niche data visualization field while still maintaining
flexibility. Accessibility and flexibility are what allow CompositeView to integrate itself
into a variety of data pipelines. These two core tenets will be the foundation for future
development and scope expansion.

2. Methods

At a high level, CompositeView’s objective is to take formatted input data and com-
municate it using both graph (network) visualization methods and interactive components.
These data follow a specific format, described in detail in Section 2.1.3, and generally consist
of items/data points/“things” ranked or related to concepts/metrics/“things”. These data
are modeled as nodes, specifically source nodes (the items being compared) and target
nodes (the items being compared against). These nodes are connected by edges, which
are weighted based on the value shared between a source and target. This value can be
a ranking, probability, relevance, likelihood, or any quantifiable value that relates two
nodes. The input data also have types or categories assigned to each node, both source
and target, that allow these nodes to fall into discrete buckets. Finally, the input data imply
directionality; edges point away from source nodes and towards target nodes.

The output presented by CompositeView consists of a visualized network where
source nodes are connected to their corresponding target nodes by edges. Both the source
and the target nodes are colored by their respective types (“buckets”), and the size of source
nodes is determined by each node’s composite score. This composite score (combined
value) is a combination of all outgoing edge weights assigned to each source node; the
combination method itself, whether an arithmetic mean, geometric mean, joint probability,
etc., can be adjusted by the user within the source code. The visualization presented by
CompositeView can be filtered based on edge value, combined value, node type, and edge
name, and the visualization itself can be adjusted through node and edge sizing, color
mapping, node spacing, and target spacing. The framework application for CompositeView
can be hosted either locally or externally, and custom data can be integrated either through
an upload button or through the source code itself.

2.1. Developing CompositeView
2.1.1. Choosing the Appropriate Tools

CompositeView aims to be as accessible and flexible as possible. Accessibility, as the
first of these two core pillars, is achieved by reducing the amount of technical prerequisites
necessary to work the tool. If a user knows the limits (Section 4.2) and scope (Section 4.3)
of CompositeView, and the data fit the correct input format, then using the tool itself
should not be a bottleneck. The second of the two pillars is flexibility, an advantage
that CompositeView potentially has over other data visualization tools. Flexibility, in
this case, is defined as the ability to quickly and easily evolve CompositeView, under
reasonable constraints, to fit the context of the data being visualized. If a potential user
of CompositeView has data that fits the general data input format, but the tool itself does
not quite provide the desired outcome, that user, with as little prerequisite knowledge as
possible, should be able to make adjustments that suit their particular use case. At the
intersection of accessibility and flexibility, the tools used to build CompositeView are chosen.
Creating a foundation that promotes these two core tenets is essential for CompositeView to
succeed, and choosing the appropriate tools that can build this foundation is equally crucial.

To start, CompositeView exists within the definitions of data visualization that include
computational support—physical drawings can be useful, but their intractability is limited.
To achieve the flexibility desired in CompositeView, it must be built using a programming
language; this choice produces a trade-off that decreases accessibility in favor of flexibility.
It is possible, perhaps even common, to utilize multiple languages when developing a
tool similar to CompositeView, but in order to maintain as much accessibility as possible,
another trade-off in favor of accessibility (at the loss of flexibility) has been made. A single
programming language, famous for its ubiquity and ease of use, has been chosen as the
main driver of CompositeView: Python (specifically Python version 3.9.7) [34]. According
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to the 2021 Stack Overflow Developer Survey, contributed to by over 80,000 developers,
Python is currently the third most popular programming language on the platform (and
the most popular language outside of dedicated web development) [35]. Python is a
general-purpose language with a focus on code readability and clear syntax that exists at
the forefront of scientific computing, particularly in the fields of machine learning, artificial
intelligence, biology, and many others [36]. Python also contains a plethora of useful
statistical, analytical, and mathematical libraries that provide all of the functionality that
CompositeView requires (and more, for others to explore).

With Python as the foundation for CompositeView, certain key building blocks are
chosen to fulfill integrated roles. NetworkX, a Python package for the creation, manipu-
lation, and study of complex networks, is the first of these building blocks and the core
of CompositeView; it is used to model the data itself [37]. To reiterate, CompositeView
presents data using concepts from graph theory and network analysis. Source nodes model
data points, target nodes model entities of interest or comparison metrics, and edges model
the quantified relationships between the two. NetworkX allows for the efficient creation of
graph objects that can be used to store data, simulate layouts, and run algorithms (such as
a modified version of depth-first search) that allow for key graph features to be efficiently
computed. The Visualizer utilizes NetworkX to both store the graph and help simulate the
layout, both of which are integral to its overall function.

To give CompositeView a scaffold to both display and interact with the graph itself,
Dash, a low-code framework for rapidly building and deploying web applications, is
the second of the three major building blocks [38]. Dash is built upon Flask, Plotly.js,
and React.js and enables the development of full stack web applications using only
Python (along with some HTML, CSS, and JavaScript when desired). Dash has been
chosen as the framework for CompositeView due to both its simplicity and its ability to
abstract complicated technologies and protocols away in favor of a streamlined approach
to development. The choice to use Dash is another trade-off between flexibility and
accessibility, this time in favor of accessibility, that helps maintain the homogeneous and
Python-driven theme of CompositeView. Knowing Python, and having the ability to
interpret Dash documentation, are the only two prerequisites (up to this point) that are
required to make custom changes to CompositeView. Dash provides HTML components,
CSS styling, and interactivity through callbacks to CompositeView, along with sliders,
drop-down menus, buttons, tables, and other features that provide a framework for data
manipulation and viewing. Interactivity is what ultimately elevates CompositeView
beyond simple graphical representations of data; it allows for novel insights and new
perspectives that would otherwise be very difficult to produce. Dash is what provides
the tools that make this interactivity possible.

The third and final of the three major building blocks employed by CompositeView
is Cytoscape, specifically Dash Cytoscape [39]. Dash Cytoscape is a graph visualization
component of Dash that specializes in creating customizable, high performance, web-based
networks rendered using Cytoscape.js. Dash Cytoscape is deeply integrated with the
Dash framework, enabling many of the key features that make Dash especially useful
work seamlessly with the displayed graph. Dash Cytoscape is the tool that unifies Dash
and the NetworkX graph object; with some simple manipulation, the graph object can
be converted into a Python list of elements that Dash Cytoscape renders and displays
in the Dash application. These three tools have been carefully selected due to, in many
parts, their ability to align with the two pillars of accessibility and flexibility that have
been key in the design philosophy of CompositeView. Other key packages, such as pandas
and NumPy, are integral to CompositeView and used throughout the code [40]. Pandas,
arguably the most important of the two for CompositeView, is a fast, powerful, easy-to-use
open-source data analysis and manipulation tool built on top of Python [41,42]. Much of
CompositeView’s data is stored within pandas DataFrames, and the speed and efficiency
of these DataFrames, in part a product of using NumPy under the hood, are invaluable in
the creation of CompositeView.
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2.1.2. The Graph–Application Split

CompositeView is conceptually split into two parts: the “graph” component and
the “application” component. Both of these parts are isolated within their own respective
Python scripts and communicate through a class instance, referred to as the graph object.
The graph component centers around a class that initializes and stores the graph attributes
and metadata, simulates the layout, and generates the element list that is eventually fed to
Dash Cytoscape. An instance of this class is created within the application script, where
the page layout is defined, user interface elements are constructed, and Dash callbacks
are built. When the application script is run, a web server is started (Dash is built upon
Flask, a micro web framework written in Python) to display the graph, interactive elements,
and data outputs (spaces displaying node data and tabular data) [43]. These interactive
elements are Dash HTML components which interact with callbacks which, in turn, interact
with the graph object itself, updating the graph object if applicable, which updates the
displayed graph and interactive element states. This cycle is repeated until the application
is terminated. Ultimately, the application (and elements contained within it) is the tool
that allows the user to directly modify the graph object, and the graph object is what the
application uses to display information about the data. A high-level overview of this
process can be seen in Figure 1.

Figure 1. A high-level overview of CompositeView’s working cycle. CompositeView has placeholder
data, which initialize the graph, and user data, which initialize the user interaction and application of
CompositeView. The cycle begins with a user uploading data and interacting with the application to
update the graph attributes and layout. Next, the Cytoscape elements are updated to run the graph.
Finally, the graph rendering and display are visually updated to the user in the CompositeView
application. The working cycle continues as the user makes updates to the data or changes or applies
CompositeView application features such as graph layout selection or filtering modes.

2.1.3. Data Formatting and Input Structure

To understand the data input format, the data themselves, the data that Composite-
View is built to visualize, must first be described. To begin with an abstract example, in
its most basic form, these data consist of a set of items. These items are ranked in respect
to some arbitrary concept, metric, or “thing” (biological entity or otherwise) based on a
quantitative value (probability, likelihood, etc.). The items, or data points, in the set can be
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modeled as nodes (termed source nodes), the arbitrary concept, metric, or “thing” can also
be modeled as a node (termed a target node), and the quantitative value shared between a
source and target node can be modeled as an edge, where the value itself is the edge weight.
To better conceptualize the current state of this example, see Figure 2a. The data abstraction
just described is, in its most basic form, the data that CompositeView can visualize. To
solidify this abstraction further, a snippet of a sample table is shown below in Table 1. Each
row corresponds to a unique source–target relationship, and each column represents the
source node name, the target node name, or the edge value. This is not the final layout, but
a first step in the building of it.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 2. The three input data examples explained in Section 2.1.3, evolving from least to most complex.

Table 1. The simplest of the three data examples described in Section 2.1.3. These data are visualized
in Figure 2a.

source_node target_node edge_value

S4 T1 4
S3 T1 3
S2 T1 2
S1 T1 1

As a second example, take the data described above where, instead of a single target,
the same set of source nodes is related to two targets, each with different edge values (see
Figure 2b). Each source node now has two edges, one for each target relationship. This
is where the concept of a composite score makes its first appearance. Each source node,
with its two edges, can join these values into a single combined value in a variety of ways
(arithmetic mean, geometric mean, weighted sum, joint probability, etc.). This composite
score, depending on the context, might hold some significance—this will be touched upon
later. This new abstraction is again further solidified in Table 2, where 8 rows correspond
to 4 unique source nodes, each with two relationships with two respective targets. This is
closer to the final data input format, but not quite there.

Table 2. More complex, but still relatively simple data from the second example described in
Section 2.1.3. These data are visualized in Figure 2b.

source_node target_node edge_value

S3 T1 3
S3 T2 4
S4 T1 4
S4 T2 2
S1 T1 1
S1 T2 3
S2 T1 2
S2 T2 1
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As the final and third example, take the set of all nodes (both source and target) as
described above and expand it to include another two nodes: a source node and a target
node. The target node is completely unique; however, the new source node shares the name
with an already existing source node. This will prompt each source node to have a new
value associated with it: a unique identifier. This unique identifier allows source nodes
with the same names (but potentially different targets) to exist as separate entities within
the network. To continue this example, the newly added source node shares two targets
with its shared name partner. It also shares an edge with the newly added target node. See
Figure 2c to see the visual representation of this abstraction. To potentially contextualize
the new source node, all the source nodes are assigned a discrete category. The original
group of source nodes is categorized under “G1” while the single new source node exists
in “G2”. Realistically, these groups could represent an infinite number of things, but in this
situation the grouping exists simply to delineate source nodes that connect to different sets
of target nodes. Table 3 shows how this abstraction is formatted into a table. This table is,
in fact, the final data input format for CompositeView.

Table 3. The full input data format, populated with data from the third example described in
Section 2.1.3. These data are visualized in Figure 2c.

source_id source_name source_type target_id target_name target_type edge_value

S3_2 S3 G2 T1_id T1 T 3
S3_2 S3 G2 T2_id T2 T 3
S3_2 S3 G2 T3_id T3 T 4
S3_1 S3 G1 T1_id T1 T 3
S3_1 S3 G1 T2_id T2 T 4
S4_1 S4 G1 T1_id T1 T 4
S4_1 S4 G1 T2_id T2 T 2
S1_1 S1 G1 T1_id T1 T 1
S1_1 S1 G1 T2_id T2 T 3
S2_1 S2 G1 T1_id T1 T 2
S2_1 S2 G1 T2_id T2 T 1

In Table 3, each row corresponds to a source–target relationship within the graph.
Each source and target node are assigned a unique identifier, name, and type (group),
and both share a single edge value. All three examples described above, from the
simplest to the most complex, can be represented in this table. To show this, take the
first and simplest example described above involving a set of source nodes ranked in
respect to a single target node. Table 4 below shows how the CompositeView input data
format could accommodate for this situation. In more precise terms, the columns and
data types for the input data format (structured as a table) are as follows: source_id
[text], source_name [text], source_type [text], target_id [text], target_name [text], tar-
get_type [text], edge_value [numerical]. The data are accessed by CompositeView either
directly as a pre-formatted DataFrame used as a graph class argument or as a formatted
Comma Separated Value (CSV) file that is uploaded (and subsequently converted into
a DataFrame) using a button component within the application itself. CSV files do
not hold data type information; however, when the file is read into CompositeView’s
edges DataFrame, the columns are cast as the appropriate types. A variety of formatted
data table examples used as inputs for CompositeView are provided in the associated
GitHub repository.
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Table 4. A display of the first input data example manipulated to fit CompositeView’s final data
input format.

source_id source_name source_type target_id target_name target_type edge_value

S4_id S4 G1 T1_id T1 T 4
S3_id S3 G1 T1_id T1 T 3
S2_id S2 G1 T1_id T1 T 2
S1_id S1 G1 T1_id T1 T 1

2.1.4. Graph Layout Methodology

An interesting problem regarding the visualization of networks involves the process
of placing nodes and edges to maintain an aesthetic and clear layout. At a surface level, this
seems trivial and underdefined, but given that the main purpose of CompositeView, and
visualization tools in general, is to communicate data succinctly and clearly, poor layouts
can prove to be extremely detrimental to this goal. Using the NetworkX package, many
graph (mathematically defined network) layout algorithms are easily available. A list of
layouts tested with CompositeView include the random layout, circular layout, Kamada–
Kawai layout (based on the Kamada–Kawai path-length cost function), and spring layout
(based on the Fruchterman–Reingold [FR] force-directed algorithm), along with a handful
of others [44,45]. Figure 3 shows a visual comparison for each of these layouts, along with
their respective runtimes, created using a typical combination of SemNet results. In this
figure, target nodes are red and source nodes are blue, regardless of true categorization.
The runtime is measured across the entire method responsible for creating the layout,
which includes data preprocessing and other operations associated with layout generation.
Ultimately, the Kamada–Kawai layout resulted in the most clear and discernible node
separation of all the preset algorithms presented by NetworkX; however, a relatively long
runtime (given this typical data set) makes it impractical, even with tuning algorithm
parameters. The second clearest layout, the spring layout, is a step below the Kamada–
Kawai layout visually (even when tuning parameters, such as node repulsive force and
edge weight); however, it runs much faster given the SemNet data sets used for testing. The
layout itself is not especially appealing, but with some adjustments in how node positions
are initialized and fixed, the spring layout becomes the ideal algorithm for generating
graph layouts for CompositeView.

A major problem with the presented layouts is that target nodes often become “stuck”
within large clusters of source nodes, losing the potential to quickly convey useful informa-
tion about which source nodes are clustered and connected to these targets. This problem
can be observed in essentially every layout shown in Figure 3; target nodes can be easily
found (with the help of sizing and coloring), but knowing which source nodes connect to
them is nearly impossible. This problem is simply an artifact of how force-directed graph
drawing algorithms, specifically the Kamada–Kawai and Fruchterman–Reingold (spring
layout) algorithms, function. Both of these algorithms define an objective function that,
in general terms, utilizes attractive and repellent forces (which are defined differently be-
tween algorithms) to generate an overall energy value for the graph, which is subsequently
minimized. With “larger” graphs, like those presented in Figure 3, the objective function is
more often than not minimized locally, producing a layout with an overall energy value
higher than the global minimum [46]. This results in layouts that can be, for lack of a better
term, unpredictable. To combat this unpredictability, while also isolating both target nodes
and source node clusters, an adjustment to the spring layout was made, roughly based
on a multi-scale technique. This “adjusted spring layout” methodology aims to generate
a rough abstraction of the graph, then build upon it in a layered fashion with increasing
detail. A preview of this methodology in action, using the same SemNet data as Figure 3,
can be seen in Figure 4.
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(a) Random layout (0.08 s) (b) Circular layout (0.05 s)

(c) Kamada–Kawai layout (101.37 s) (d) Spring layout (2.93 s)

Figure 3. A sample of tested graph layouts along with their CompositeView runtimes, all based on
the same SemNet results data set (approximately 2472 source nodes).

Figure 4. The adjusted spring graph layout using the same SemNet test data from Figure 3 (runtime:
5.78 s).

The first of three parts in the adjusted spring layout process involves first isolating the
target nodes, then simulating them using the FR algorithm. In this first step, the targets are
connected using artificial edges. These edges are based on whether intermediate source
nodes connect a set of linked targets. For example, if a set of target nodes all connect to
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a shared set of source nodes (a cluster), they themselves will be connected with shared
artificial edges. This example scenario is quite common with SemNet results, given that
often they involve a single set of source nodes being ranked in respect to multiple targets.
The weights associated with the artificial edges (weight values in the FR algorithm increase
or decrease the “pull” of an edge on a node) are inversely proportional to the number of
source nodes connected to a shared set of targets. If the previous example set of target nodes
are connected to the same 80 source nodes, the artificial edge weights connecting them to
each other would be less than if the same set of target nodes were connected to the same 40
source nodes instead. This might seem counter-intuitive, having weight values increase
with a decrease in connectivity, but this choice results in more “room” between targets for
the eventual source nodes to be placed and subsequently simulated. Once the target nodes
are simulated (in this case, using 50 iterations of the FR algorithm), their position is fixed.
To better understand this first portion of the adjusted spring layout method, see Figure 5a.

(a)

(b)

(c)

Figure 5. The adjusted spring layout method, broken down into three logical steps. The data shown
are placeholder data used in CompositeView. (a) Initial target nodes are simulated and positions are
fixed. (b) Artificial edges are removed and source nodes are filled in around the shared target node
centroids. (c) Source nodes are simulated with edge weights.
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The second part of this three-step method involves re-populating the visualization
with the briefly removed source nodes. Now that all target nodes have their position fixed,
the artificial edges are removed, and the source nodes are placed once again on the graph.
Each group of source nodes that share common targets are placed around the centroid of
these targets following a Gaussian distribution (if all the source nodes were placed on the
centroid itself, they would have no repelling force). See Figure 5b to better understand
the initial source node placement. With the source nodes “filled in”, the third and final of
the three steps is enacted, starting with running the FR algorithm once again, though with
(recommended) fewer iterations (see Figure 5c). The algorithm time scales with the number
of nodes in the graph as discussed in the results presented in Section 3.1. Keeping the
iteration count low will improve runtime at the cost of the potential interpretability of the
graph. This is a trade-off that users can make themselves, using the Graph Manipulation
elements provided in CompositeView.

2.1.5. Composite Scores

A unique feature of CompositeView is its ability to calculate composite scores for
every source node in the graph. Composite scores can be defined as representations of
small sets of conceptually and statistically similar data that, when combined, generate
a single score with the potential of reducing information overload [7]. This composite
score, in CompositeView’s current state, consists of the arithmetic mean of all edge weights
“leaving” each source node, an artifact CompositeView’s SemNet origins. However, the
combination method used could be easily edited if the data set being visualized calls for it.
Anything from simple weighted linear combinations to more complex joint probabilities
and functions could be used to combine outgoing edge values on a per source node basis.
Understanding the benefit of calculating composite scores is best shown with an example.

Take the data set for the Human Development Index (HDI) [10]. The HDI is a com-
posite score that aims to quantify the “development” of a country, based on three specific
indices: the life expectancy index, the education index, and the income index. Each of
these measures aim to capture different aspects of what make a country developed, but,
for CompositeView, the most important application of this data set is that it simply and
clearly captures how composite scores (and the visualization of such scores) are useful.
Each country analyzed for an HDI ranking can be modeled as a source node. These
189 countries are ranked in respect to three metrics which combine to create the HDI
composite score. In CompositeView, each country, as a source node, shares three edges
with the three index values, each modeled as a target node. The HDI value is calculated
by taking the geometric mean of the three index values per country. An example of HDI
data displayed using CompositeView can be seen in Section 3.2.2. The Python class that
creates the graph object (the object that is directly manipulated by the application and
generates the element list for Dash Cytoscape to read) contains a method dedicated to
combining values and generating the composite score for every source node. The main
pandas DataFrame that contains all of the graph edge information is filtered to create a
unique sub DataFrame for each respective source node. This sub DataFrame is fed to the
value combination method which, in turn, can use any information in this sub DataFrame
to calculate the composite score as seen fit. If desired, additional columns containing
pertinent information for the calculation of the composite score can be added to the
global edges DataFrame and used in the composite score calculation. Once the composite
score for each source node is calculated, values are stored in a Python dictionary that
contains every source node’s unique identifier as a key and the respective composite
score as the value. If the source nodes being displayed only have a single outgoing edge,
the composite score is equal to this edge value.

The purpose of calculating the composite score within the graph object, as opposed
to simply assigning composite scores to source nodes before the data is uploaded to
CompositeView, is that manipulating the graph can change the composite score itself. For
example, if a source node with three edge values has one of the edges filtered out of the
graph, the composite score associated with that source node will change based on the new
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set of outgoing edges. The implication of this is that, depending on the data set, a user of
CompositeView could easily filter edge values and trim target nodes to understand the
impact of removing or adding back certain data. In the HDI example, filtering out one
of the three metric values (modeled as target nodes) would result in a composite score
that is not specifically equivalent to the HDI but might have some significance in its own
right. Regarding SemNet, this can be crucial in understanding how certain biomedical
concepts relate to the shared set of source nodes they are connected to. The composite
score itself can be filtered in CompositeView, and the display size of the visualized source
nodes is dependent on the composite score associated with them. Composite scores do not
impact the size of target nodes, which are baseline larger than all source nodes for ease
of identification.

2.1.6. Graph Filtering and Interactivity

Visualizing with CompositeView allows users to be flexible with their data. An initially
strict interpretation of the data can be made malleable with certain combinations of filters
and changes, enabling insight that would have otherwise been missed. The interactivity is
generally broken down into three categories: value filtering, node and type filtering, and
graph manipulation.

Value filtering encompasses the ability to set bounds and custom limits to what
nodes and edges are visualized. This is realized with three interactive components within
CompositeView: combined value (composite score) filtering, edge value filtering, and max
node count filtering. Each of these components allows the user to set a custom range in
which the respective value can exist. To revisit the HDI example mentioned in Section 2.1.5,
combined values can be filtered to only include countries that have a composite score
between 0.5 and 0.75 (composite score is equivalent to the HDI value in this example); these
countries lay somewhere in the upper-middle portion of the ranked HDI list.

Edge filtering allows the display of edge values to be controlled within a range. Under
the assumption that edges share a similar scale and statistical nature, as understood in
the definition of composite score, an interactive Dash sliding component allows the edge
values shared between source and target nodes to be removed, and subsequently added
back, based on their value. Edges that are filtered out will no longer contribute to the
composite score, potentially changing both the size and meaning of a source node. As
a final caveat involving filtering edge values, depending on how the composite score is
calculated, sometimes edge value filtering can affect the global maximum or minimum
combined value range. For example, take a graph with a global combined value range
between two and eight, where each combined value is calculated by taking the arithmetic
mean of outgoing source node edges. If a source node with outgoing edges evaluated at
four, seven, and twelve has the lowest valued edge filtered out, its composite score is now
outside the global graph bound. To combat this, the global combined value range adapts to
the current state of the graph.

The third, and potentially most straightforward, of the filtering components involves
max node filtering. This component simply sets a ceiling for how many nodes can be
visualized, determined by the composite score value. If the max node count is set to be half
the entire number of source nodes, then the 50% of source nodes with a higher composite
score than the lower 50% will be visualized. As a final note, filters are stacked in a specific
way to allow for accurate interactions between one another. Edges are first filtered out,
allowing new composite scores to be calculated based on resulting edges. Once these new
composite scores are determined, they themselves are filtered. Finally, the max node count
comes into play once both edge values and combined values are visited in turn. The value
filtering interactive elements displayed by CompositeView can be seen in Figure 6a.

Node and type filtering is made possible by the use of Dash dropdowns, components
that allow the user to choose values based on a predetermined set. In the case of target
node filtering, this set consists of all the target nodes in the graph. The user can decide
what target nodes to include in the visualization, which, in turn, can potentially impact
what source nodes appear and how their composite scores are calculated. Take, again, the
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HDI example. If the education index target node is filtered out, then any source nodes
exclusively connected to this target are also removed (which is none, in this case), and the
composite score of the remaining source nodes is recalculated to not include the education
index. This changes the overall meaning of the composite score assigned to each source
node, a potential benefit to understanding the data. Filtering the source nodes performs a
similar action with the same dropdown component, although this time the set of values
provided to the user consists of all source node names.

(a) (b)

Figure 6. Value filtering as well as node and type filtering settings as displayed by CompositeView.
(a) Value filtering sliders. (b) Node and edge filtering dropdowns.

Filtering the source nodes allows specific names to show up in the visualization,
excluding any sources not explicitly specified. Filtering source nodes does not filter by
source node ID, but rather by name itself, allowing multiple source nodes that share the
same name (a common occurrence in analyzing multiple SemNet results) but different
source node ID values to exist in the same visualization. Finally, filtering by type involves
using all node type values as the input set for the third Dash dropdown component. The
user can choose what node type is going to be displayed by CompositeView based on
the options provided. As a last important note, when filtering for a specific source node
type, target node type values must also be considered. Simply including source node type
filters will display no nodes at all, since, without target node types (and therefore target
nodes themselves) included, the source nodes by themselves have no edges and are filtered
out, based on previously defined rules. The node and type filtering interactive elements
displayed by CompositeView can be seen in Figure 6b.

The graph manipulation settings, as well as the entire CompositeView application
layout, can be seen in Figure 7. Graph manipulation entails both color editing and layout
adjustments, along with a few other quality-of-life tools (such as node and edge size
adjustment). Color editing provides color picking components that allow the user to
specify source node color, source node gradient color, target node color, and selected type
color (the type value of a currently selected node will be stored and used to determine a
color change). Along with specific color editing components, a Dash button component is
provided that randomizes both source and target node colors. Layout adjustment sliding
components are the user’s tools to manipulate source and target node spread. Target spread
influences the optimal distance between nodes (the k parameter in the NetworkX spring
layout) for the first simulation in the adjusted spring layout method (Figure 5a). Increasing
this value increases the “spread” of the initial target nodes. Source spread accomplishes
a similar goal, but with only the source nodes that are populated after the target nodes
are fixed. See Figure 8 to understand the impact of source spread; it is arguably the most
important parameter impacting the readability of the graph. Depending on the data set,
the source spread might need to be adjusted to make the graph baseline readable.

Two additional extremely important graph manipulation tools include the simulation
iteration sliding component and the simulation button. The simulation iteration sliding
component sets the number of iterations that the adjusted spring layout, specifically after
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the source nodes are added back, can run in the FR algorithm. Results shown in Section 3.1
shows the extent to which simulating the layout impacts the time it takes for the graph
to completely finish rendering. By lowering the simulation iteration slider value, a trade-
off between performance and aesthetics (and potential graph readability) is made. For
large data sets, it might be prudent to initially set the simulation iteration value low and
gradually increase it as nodes and edges are filtered out of the visualization. The simulation
iteration value only impacts the simulation after the source nodes are added; before then,
when target nodes are initially simulated, the performance impact is comparatively small.
The simulation button itself simply re-simulates the graph. If a graph layout does not
meet visualization standards, re-simulating it might help. The final graph manipulation
components involve both node and edge size adjustments. These components exist only to
help with visualization aesthetics. The ability to change both node and edge size allows
for different sized graphs to be visualized using the same tool; a small graph could benefit
from larger node and edge sizes, while a very large graph might benefit from smaller node
and edge sizes (to prevent overlap).

Figure 7. The complete CompositeView application layout (with Graph Manipulation settings open).

(a)

Figure 8. Cont.
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(b)

(c)

Figure 8. The impact of source spread (k in the NetworkX spring layout). The data shown is
placeholder data used in CompositeView. (a) Source spread value half of base. (b) Base source spread
value, the same as Figure 5c. (c) Source spread value double of base.

2.2. Stress Testing Methods

To properly use CompositeView, understanding its scope and limitations is necessary.
Recall that CompositeView has two logical groups: the application and the graph. Both
of these components are individually timed. The application component is defined as
all of the code that contributes to the creation of the application layout and callbacks.
This includes generating callback decorators and functions, setting up Dash components,
and defining layout styles and features. This does not include anything involving the
Flask server, HTTP requests, data transfer between callbacks, or React.js rendering of the
components and graph itself. This pipeline is well defined and very fast. Unless the
rendered graph is intractably large (more than 5000 nodes typically), the impact of these
elements is ultimately insignificant. The graph component consists of the Python class
that is ultimately responsible for generating the NetworkX graph, updating the graph,
specifying the graph layout, and outputting the graph elements list that is subsequently
used by Dash Cytoscape.

The runtime will be recorded for both of these logical groups, with the graph timing
split into two further components: graph initialization and graph update. The graph
class itself is made up of many helper methods that act as building blocks that perform
individual, yet harmonious, functions within CompositeView itself. In tandem, the methods
involved with initializing and updating the graph utilize all of the “blocks” that are not
computationally insignificant, while also providing an interpretable context for the timing
results. The graph is initialized every time CompositeView starts or new data is uploaded
(uploading data essentially reinstantiates the graph class). The graph is updated every
time a filtering or graph manipulation interaction occurs. Generally, this update can either
directly prune the elements list fed to Dash Cytoscape, or it can require the graph to
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be recreated and resimulated based on new parameters (this split is a result of runtime
optimization and graph state caching). The former of these two situations is being timed,
as the latter, for all intents and purposes, is largely the same as initialization but with new
starting parameters.

The timing process begins with importing the Time module, provided by the Python
Software Foundation. Next, a loop is created that iterates 500 times. During each iteration,
data are generated, a new graph object is created and initialized, the application layout and
callbacks are defined, and the graph is filtered and updated; all of these different actions
simulate a typical use of CompositeView. The data generated during each iteration consist
of a single target node connected to a number of source nodes determined by the loop
variable. The number of source nodes generated per loop is 20(loopvariable+ 1); the source
node count starts at 20 and ends at 10,000. Each source node in these data is assigned an
edge value of either 0.25 or 0.75 connecting it to the single target node, alternating after
every iteration and resulting in half the edges being evaluated at 0.25 and the other half
at 0.75. For each iteration, a new graph object is initialized and timed. All of the helper
methods called when the graph object is initialized are also timed.

Once the new graph object is initialized, that same object is updated to filter out
all source nodes with edge values below 0.5. In other words, exactly half of the source
nodes are filtered out of the visualization. The time it takes for the graph to update, as
well as the time it takes for all helper methods called during the update to run, will be
recorded. Additionally, the time it takes to define the application layout, create the Dash
callbacks, specify CSS and styling, and perform every other action not directly involved
with the graph object and server, but still necessary for the application to run, will be timed.
No aspect of building the application scales with the size of the data themselves, so the
recorded time for each iteration is not expected to change. Finally, the time it takes for
new graph objects to be created using previously defined attributes will be timed. Data
transfer during application runtime is performed using JSON, a common data interchange
format. Every time a callback is fired, all graph object attributes are stored in JSON and,
subsequently, reapplied to a new graph object when required (essentially saving the graph
object state). The time it takes the attributes to be loaded into the new object is what is
being timed, as these attributes hold the graph data, which scale with graph size.

2.3. Preparing and Analyzing Sample Data

To showcase CompositeView’s power as a general-purpose visualization tool, three
unique sample data sets have been chosen for visualization: network analysis data in the
form of SemNet results, Human Development Index (HDI) data, and cardiovascular disease
(CVD) data. Each of these data sets are cleaned and adjusted to fit CompositeView’s data
input format detailed in Section 2.1.3. To further showcase CompositeView’s capabilities,
each data visualization will be manipulated to gain new insight in a way that, without Com-
positeView, would be much more difficult. The raw data, as well as the Jupyter notebooks
used to clean and format the data, are provided in the associated GitHub repository.

2.3.1. SemNet Data

The first sample data set, the SemNet results data, is in actuality two data sets com-
bined into one. These two data sets consist of the results of two individual SemNet runs
using the target nodes Alzheimer’s disease (AD) and hypothyroidism. All intersecting
nodes of one path length away from each target (within the SemNet knowledge graph)
that are categorized under the Unified Medical Language System (UMLS) semantic type
categories “Amino Acid, Peptide, or Protein” and “Disease or Syndrome” are used as the
shared source node set. This set of source nodes is then ranked in respect to both targets
using the exact mean HeteSim algorithm with a specified metapath length of 2. Both uses
of SemNet produce a pandas DataFrame consisting of six columns: “source_node”, which
contains the CUI identifiers for each source node in the shared set, “source_name”, which
contains the name for each source node in the shared set, “source_type”, which indicates
the source node’s UMLS semantic type, “target_node”, which contains the CUI identifier
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for either AD or hypothyroidism, respectively, “target_name”, which contains the name of
the respective target node, and finally “hetesim_score”, which is the aggregate HeteSim
score associated with each source–target pair. The SemNet output is (by design) format-
ted similarly to Table 3, so combining the two SemNet results DataFrames into a single
DataFrame to meet the input data format requirements is straightforward. The column
“target_type” specified in the input data format table is populated with “target_node” to
uniquely categorize each node in the eventual visualization. Once the combined DataFrame
is generated, it is exported as a CSV file and subsequently uploaded to CompositeView.

Once the formatted CSV file is uploaded to CompositeView, the visualization is
manipulated to filter out edges above or below the inner 50–75 percentile range. This
specific manipulation is particularly useful since, in SemNet’s current knowledge graph,
there is a prevalence of highly connected, generic nodes (nodes representing concepts such
as “water” or “protein” that hold little significance). As sources, these generic nodes are
often assigned very high aggregate HeteSim scores which CompositeView can filter out
of the graph. Adjusting the edge value range can allow for a “sweet spot” to form for
SemNet results, where source nodes that are highly ranked, but not too highly ranked, are
visualized and distinguished. The resulting visualizations, both unadjusted and adjusted,
are described in Section 3.2.1.

2.3.2. Human Development Index Data

The second of the three sample data sets consists of Human Development Index (HDI)
data taken from the 2020 Human Development Report [10]. These data, similar to the
SemNet sample data, are actually a combination of four data sets, where 189 countries are
evaluated based on life expectancy at birth, expected years of schooling, mean years of
schooling, and gross national income per capita. Each of these four metrics is normalized
(then combined, where required) between zero and one, resulting in the three resulting
indices: the life expectancy index (life expectancy at birth, normalized), the education
index (both expected years of schooling and mean years of schooling are normalized,
then the arithmetic mean is taken), and the income index (gross national income per
capita, normalized). Each of these three index values is modeled as a target node, each of
the respective countries is modeled as a source node, and the actual index value shared
between each country and the respective index is modeled as each source–target pair’s
edge weight. Each country in the final formatted input data is assigned a group, ranging
from “low development” to “high development”. These categories are determined by the
HDI value assigned to a country, which is calculated beforehand and then disregarded to
better showcase CompositeView’s capabilities. Once the HDI data are formatted based on
the specifications detailed in Section 2.1.3, they are exported as a CSV file and subsequently
uploaded to CompositeView.

After the formatted CSV is uploaded to CompositeView, the target node “educa-
tion_index” is filtered out of the visualization. This leads to the composite score associated
with each source node (country) to no longer include the education index value in the
geometric mean, resulting in the composite value itself no longer being equivalent to the
HDI value. This new composite score, though no longer labeled as the HDI value, holds its
own significance in a certain context. After “education_index” is filtered out, the maximum
number of displayed nodes is adjusted to allow only the top three nodes by composite
score to be visualized. The resulting visualizations, both unadjusted and adjusted, are
described in Section 3.2.2.

2.3.3. Cardiovascular Disease Data

The last of the three sample data sets involves cardiovascular disease (CVD) 10-year
risk assessment data, originally taken as a sample from the Isfahan Cohort Study (ICS).
These data were originally used to help determine a new risk assessment chart for CVD
using the PARS model, a novel method for predicting a patient’s 10-year risk of CVD
occurring [11]. These data, in the context of the PARS model and risk assessment charts, are
an example of data that are not originally well suited for CompositeView. The risk factors,
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which would be modeled as the target nodes, are often measured using discrete values
(such as sex, presence of smoking, etc.). These discrete values, along with continuously
measured risk factors such as blood pressure and cholesterol concentrations, do not exist
on the same scale and, therefore, the edge value slider used in CompositeView has little
practical use. Part of the Cox model used to compute the 10-year risk of CVD involves
scaling the difference between respective mean risk factors and measured risk factors by
the hazard ratio. These resulting values could potentially be the associated edge values
used by CompositeView (as they are ultimately summed to help generate the 10-year risk
probability); however, the efficacy of this has not been determined. Instead, these data are
used by a different model developed in D’agostino et al. [47] (an inspiration and comparison
study used in the development of the PARS model) to generate values that can be used as
edge weights in CompositeView. This new CVD 10-year risk assessment algorithm, known
as the Framingham Risk Score (FRS), is used to map risk factor measurements to point
values, which are subsequently summed to generate a composite score. This composite
score determines the overall risk of a 10-year CVD event occurring. The risk factors used by
the FRS, as described in D’Agostino et al, do not perfectly overlap with the ICS sample data
risk factors; some adjustments have therefore been made. The efficacy of these adjustments
is ultimately inconsequential (though intuitive), as the data and algorithms are used to
explain CompositeView. All adjustments are nevertheless documented in the Jupyter
notebooks within the GitHub repository attached to this paper.

Ultimately, the risk factors used in the Framingham Risk Score are modeled as target
nodes, the patients themselves are modeled as source nodes, and the risk factor mea-
surements, converted to point values per the FRS model, are modeled as each respective
source–target pair’s edge weight. Additionally, each source node is categorized by sex;
the Framingham Risk Score charts are delineated based on sex, making this particular
categorization intuitive for the eventual visualization. Once the raw data are cleaned and
formatted per Section 2.1.3, they are exported as a CSV and subsequently uploaded to
CompositeView. As a test analysis, all but the two target nodes “age” and “smoking_status”
are filtered out of the visualization. D’Agostino el al. notes that these risk factors are
especially impactful in the likelihood of a CVD event occurring within 10 years, as they are
assigned particularly high point values, especially age. The resulting visualizations, both
unadjusted and adjusted, are described in Section 3.2.3.

3. Results
3.1. Stress Testing Results

The timing results for the process described in Section 2.2 can be observed in
Figures 9 and 10a. Figure 9 visualizes the timing impact of increasing the number of source
nodes and edges on graph initialization, graph update, attribute loading, and application
layout and callback creation. Graph initialization makes up the majority of runtime ob-
served in this initial analysis, which is unsurprising given that simulating the graph layout,
the most computational taxing component of the visualizer, is performed in full when the
graph object is first instantiated. The breakdown of the most impactful methods within the
graph initialization can be seen in Figure 10a. Not all methods used during initialization
are included. A select few, such as those tasked with creating the pandas DataFrame or
holding the edge data or color mapping, are computationally inconsequential.
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Figure 9. Application startup, graph initialization, attribute loading, and graph update.

Updating the graph is the second most time-consuming process, as seen in Figure 9.
When nodes and edges are removed from the graph, in manner similar to how half of
the source nodes are removed from the visualization, as described in Section 2.2, the
elements list that is read by Dash Cytoscape is directly modified. Each node that is filtered
out is removed from this list, eliminating the need to resimulate the layout, the most
computationally expensive part of the Visualizer. Filtering the data, the process of adjusting
the core pandas DataFrame of graph edges based on user input, is the most computationally
expensive part of updating the graph, assuming the update does not involve simulating
the graph layout. When the graph layout is resimulated, nodes that have been filtered
out no longer hold position information. When these nodes are reintroduced into the
graph, a new layout must be simulated to assign position information to these newly added
nodes. When removing nodes from a graph that has already been simulated, the position
information for that individual layout simulation is stored and can be reintroduced if that
node is added back into the visualization. This process was designed to cache graph states
and reduce the need to simulate graph layouts, given that this process is far and away the
most taxing on runtime. Beyond initializing and updating the graph, both attribute loading
and application layout and callback creation are computationally inconsequential, even
when the data used by the graph are increasing in number. As a final note, once the graph
layout is rendered using Dash Cytoscape, depending on the total number of nodes and
edges being visualized, there is some “sluggishness” associated with an increased number
of nodes. This is a difficult thing to measure. Ultimately, reducing the overall node count
through filters or changes to initial graph parameters can improve performance immensely
and is suggested.

3.2. Visualizing Sample Data and Analysis Results
3.2.1. SemNet Data

The sample SemNet data described in Section 2.3.1 were uploaded to CompositeView
as a CSV file; the resulting unfiltered visualization can be seen in Figure 11a. In this visual-
ization, nodes are colored based on their associated types or groups: red indicates target
nodes, blue indicates UMLS semantic type “Disease or Syndrome”, and green indicates
UMLS semantic type “Amino Acid, Peptide, or Protein”. After the data was filtered per
Section 2.3.1, the visualization seen in Figure 11b was generated. There are three distinct
clusters of source nodes: two surrounding each target node, and one shared between
both target nodes. Recall that the filtering applied to this data limits edge values to the
50–75 percentile range; this explains the source nodes with only one edge connected to one
of the two respective targets. The cluster of source nodes shared between both targets rep-
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resents the “sweet spot” where each node is highly related to both Alzheimer’s disease and
hypothyroidism per the HeteSim relevance measure within the SemNet knowledge graph.

(a) Graph initialization

(b) Graph update
Figure 10. Runtime analysis of graph startup and update, broken down by most important methods.

(a) Unfiltered SemNet sample data. (b) Filtered SemNet sample data.

Figure 11. The SemNet sample data, both unfiltered (a) and filtered (b), based on criteria described
in Section 2.3.1.

3.2.2. Human Development Index Data

The formatted HDI data as described in Section 2.3.2 was also uploaded to Composite-
View as a CSV; the resulting unfiltered visualization can be seen in Figure 12a. Source nodes
are colored based on development category, with each color mapped as follows: orange is
“very high development”, pink is “high development”, green is “medium development”,
and blue is “low development”. Target nodes, as in the sample SemNet data visualization,
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are colored red for ease of identification. After the data were filtered per Section 2.3.2, the
three resulting source nodes were Australia, Japan, and Andorra. With the absence of the
“education_index” target node, these three source nodes had the highest composite score.
The filtered visualization is shown in Figure 12b. The three highest ranked source nodes
with all three targets visualized (the composite score then being equal to the HDI value)
were Norway, Ireland, and Switzerland, implying that these countries rely on the education
index to reach their high HDI scores. As a final point of validation, the top ten composite
scores with all three targets included in the visualization (and therefore composite score)
correspond exactly with the HDI ranking and respective values.

(a) Unfiltered HDI sample data. (b) Filtered HDI sample data.

Figure 12. The HDI sample data, both unfiltered (a) and filtered (b), based on criteria described in
Section 2.3.2.

3.2.3. Cardiovascular Disease Data

The final of the three sample data sets, the CVD 10-year risk assessment data, was
uploaded to CompositeView as a CSV; the resulting unfiltered visualization can be observed
in Figure 13a. Like the previous two sample data visualizations, the target nodes are
colored red for ease of identification. The source nodes are categorized by sex and colored
accordingly: blue indicates male, orange indicates female. After the data was filtered per
Section 2.3.3, the resulting visualization seen in Figure 13b was displayed. The larger source
nodes indicate “higher risk” of a 10-year CVD event occurring. Interestingly, the higher
risk male source nodes tend to gravitate towards the “smoking_status” target node and
the higher risk female source nodes tend to gravitate towards the “age” target node. The
implication is that male patients are more likely to be higher risk due to smoking than
female patients.

(a) Unfiltered CVD sample data. (b) Filtered CVD sample data.

Figure 13. The CVD sample data, both unfiltered (a) and filtered (b), based on criteria described in
Section 2.3.3.
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4. Discussion
4.1. Related Work and Comparisons

Data visualization is certainly not a novel concept. There are many data visualization
tools (or tools that can visualize data, even if their principal design intent was not specific
to data visualization). Here, we compare CompositeView to six relatively common data vi-
sualization tools ranging from “least” to “most” similar to CompositeView: Excel, Tableau,
Cytoscape, Neo4j, NodeXL, and Gephi. Excel and Tableau are general data visualization
tools which are not specific to network visualization. Cytoscape is an open-source bioinfor-
matics software platform for visualizing molecular interaction networks and integrating
with gene expression profiles and other state data. Neo4j is primarily an open-source graph
database software with some graph visualization ability. NodeXL (or the paid upgrade,
NodeXL Pro) is a social network analysis and visualization tool. Finally, Gephi is a general
network visualization and analysis tool which is not customized to a specific data domain.

Unlike CompositeView, none of these comparison tools have the ability to automati-
cally calculate composite scores “on the fly.” With significant coding by the user, some other
visualization tools (Excel, Tableau, Cytoscape, and Gephi) could be adapted to calculate
network composite scores, but the composite scores will not automatically update when
changing the graph layout or doing filtering customization. This is the principal difference
between CompositeView and all of the tools qualitatively compared below. CompositeView
is not simply a network visualization tool; rather, it is a tool to calculate composite scores
that interactively update as the user zooms in or out of a graph to examine composite rela-
tionships across varying levels of data aggregation. Live, automatic updating of composite
scores while interacting with or filtering data is key for a domain user to more efficiently
decipher actionable insight from complex relationships.

In summary, CompositeView fills a niche gap compared to other currently available
tools by: (1) automatically calculating and automatically updating composite scores as the
user interacts with the graph to filter or aggregate data; (2) providing layouts and features
that optimally decrease information overload for the specified data format; (3) performing
interactive composite scoring not only for network data, but also for non-network data,
which enables actionable insight to be deduced from a wider variety of large, complex
data sets.

4.1.1. Comparison to Excel

Excel is a software produced by Microsoft (Redmond, WA, USA; www.microsoft.com)
that enables the analysis of spreadsheets and tables, its primary data structure. These data,
which optimally range from small to medium in size, can be quickly and easily analyzed
using an assortment of Excel functions. Excel has advantages over CompositeView in
many respects, particularly in its general-purpose usability and optimization; however, in
the specific realm of composite score data, as described in Section 2.1.3, CompositeView
has its own advantages. Excel lacks the network visualization power of Cytoscape as
well as the precise, customizable scripting capabilities of Python, two core advantages of
CompositeView. Additionally, the interactivity provided by Dash and its assortment of
components and callback functions can, in many ways, outperform Excel in this context.
Finally, the ability to easily distribute CompositeView (in the form of web application
hosting) is arguably higher than Excel. Ultimately, certain network analysis data and more
general composite score data lend themselves very well to network-based visualization
and interactivity, which favor CompositeView.

4.1.2. Comparison to Tableau

Tableau [4] is an extremely powerful data visualization software that specializes
in ease of use and broad applicability. Its drag and drop design, paired with custom
calculation fields and filters, makes it intuitive and well suited for many types of visual-
izations, specifically dashboards. Tableau shares many potential drawbacks with Excel,
however, particularly in network-based visualization and flexibility. What might seem
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counter-intuitive at first is that CompositeView’s relatively narrow scope can, in many
ways, improve its flexibility in respect to other visualization tools. To clarify, much of
the calculation functionality in Tableau can be quite restrictive in support of some of its
core design choices such as ease of use and broad applicability. This calculation limitation
(something not as pronounced in Excel), along with a relatively rigid framework, make
Tableau great for fast, practical visualizations but potentially not as great for visualizing
composite score data in an interactive way, particularly when modeled as a network. As a
general theme, CompositeView provides fast, flexible, and easy visualization capabilities
for a specific data format that would otherwise be more difficult to visualize and interact
with using other tools that are designed to be more general.

4.1.3. Comparison to Cytoscape

Cytoscape [39] is an open-source software platform for both visualizing and analyzing
complex networks and integrating them with attribute data. Originally built to visualize
biomolecular interaction networks, Cytoscape has since expanded to include a sister project,
Cytoscape.js, to generalize the platform and allow in-browser visualizations that support
a variety of plugins. In fact, one of the key tools CompositeView uses is Dash Cytoscape,
a translation of Cytoscape.js features that are integrated into the Dash framework. What,
therefore, is the point of CompositeView if Cytoscape ultimately exists? In essence, Com-
positeView does not visualize networks: it utilizes networks to visualize composite score
data. The elements used to filter, manipulate, color, and effectively simulate the data have
already been built into CompositeView; as long as the input data format is met, and the
data align with the “composite score” definition, CompositeView is very simple and quick
to use. Visualizing similar data using Cytoscape alone would constitute building custom
filters and sliders, calculating the composite score manually, and learning a potentially
complex tool for a very specific use case. As a final comparison, CompositeView is built
entirely in Python (using specifically chosen packages to ensure this unilateral theme) to
allow for easy integration with other Python-based data analysis pipelines. Given Python’s
popularity, this was a deliberate design choice.

4.1.4. Comparison to Neo4j

Neo4j (https://neo4j.com) is a graph database software with native graph storage and
processing but primarily external visualization. It is most known for its database manage-
ment system rather than its visualization features. Neo4j utilizes additional embeddable
tools (neovis.js, popoto.js), embeddable connections, embeddable libraries (d3.js, vis.js,
sigma.js, vivagraph.js, or cytoscape.js), or stand alone products (neo4j Bloom, Tableau,
Linkurious, or Keylines, etc.) to perform data visualization of data stored in the neo4j graph
database. However, the embeddable open-source Cytoscape library is one of the most
popular and primary embeddable libraries used to perform data visualization. Cytoscape
was described in detail above and also forms part of the foundation of CompositeView.
While neo4j is convenient for querying a database, it is known to be sluggish when per-
forming multiple queries on a large graph. For example, the replacement of neo4j with
nested Python libraries resulted in multiple orders of magnitude of speed up in the SemNet
2.0 biomedical knowledge graph analysis software [9]. Given that neo4j is mostly reliant
on other embedded tools or external products, it does not have the built-in functionality
to update composite scores on the fly as a user interacts with the data to examine varying
levels of filtering or aggregation.

4.1.5. Comparison to NodeXL

NodeXL (https://nodexl.com) is a true network data visualization tool that utilizes
the Microsoft Excel environment. Essentially, NodeXL is an add-in to Microsoft Excel. It can
take input lists of nodes and edges to illustrate relationships in the network. NodeXL was
primarily developed for social network analysis, as evidenced by its advertised connection
to the Social Media Research Foundation as of the time of the time of publication. NodeXL
comes in a free version as well as NodeXL Pro, which is a paid service. The open-source
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NodeXL version enables basic user features such as: shape, color, size, opacity, and label
of vertices; calculation of overall network metrics such as density or modularity; and
calculation of basic vertex metrics such as degree, in-degree, or out-degree. The NodeXL Pro
version unlocks more analytical capability and convenience features, including advanced
network metrics (betweenness centrality, Eigenvector centrality, etc.), content analysis (text
sentiment, time series, hashtag counts), social network API(s), data import/export, and
some automation. The ability to interact seamlessly with Excel is one strength of NodeXL
or NodeXL Pro; many data sets are naturally stored in CSV, XLS, or XLSX files, which are
native to Excel. However, the largest strength of NodeXL and especially NodeXL Pro are
convenience features that make it especially suited for social network analysis. However,
neither NodeXL nor NodeXL Pro has built-in interactive calculation of composite score
data in the manner of CompositeView. Additionally, NodeXL is meant to handle smaller
graphs (in terms of number of nodes and edges) compared to CompositeView or Gephi, the
latter of which is discussed below. As such, NodeXL cannot replace the utility or function
of CompositeView for composite scoring visualizations.

4.1.6. Comparison to Gephi

Gephi [5], like Cytoscape, is an open-source software platform for both visualizing
and analyzing complex networks. Gephi differs from CompositeView, Cytoscape, and
NodeXL in its use case as a more generalist network visualization tool. As a pure network
visualization tool, Gephi has many great features. It allows the user to choose multiple
layout options, color coding patterns, and filters that are more granular and customizable
when compared to options provided by NodeXL or CompositeView. CompositeView,
however, is not built as a dedicated network visualization tool, but rather as a tool that
utilizes network visualization techniques to display and interact with composite score data.
CompositeView automatically calculates composite scores for source nodes (assuming the
data complies with the format described in Section 2.1.3) and allows the user to filter source
nodes, target nodes, and their associated values dynamically based on this calculated score.
Gephi can also embed attribute data, such as a composite score, but it must be calculated
beforehand and assigned to nodes individually (a difficult task, especially if the user has
minimal programming experience). Additionally, this composite score does not change
with filtering actions. Finally, the use of Dash with CompositeView allows a user with
programming experience to adjust the application and create a more flexible dashboard
beyond just a network visualization tool. Gephi is a dedicated network visualization tool,
while CompositeView can be more flexible.

Figure 14 displays the same SemNet data using the two tools, Gephi and Compos-
iteView. CompositeView utilizes the adjusted spring layout, as described in Section 2.1.4,
while Gephi, a more generalist tool, utilizes the Fruchterman–Reingold algorithm, which
results in a layout with ambiguously assigned source node clusters. This example illustrates
that even the static visualization is much improved with CompositeView over Gephi. It
is much easier for CompositeView to visually discern key relationships between defined
target nodes and groups of related source nodes. However, the biggest difference is that
the Gephi-produced image cannot be dynamically updated with new composite scores
computed after filtering, adjusting node counts, or adjusting any other displayed feature.
By contrast, CompositeView can dynamically update the visualized image as the user
crafts a visualization best suited for acquiring insight. Thus, while Gephi is the closest to
CompositeView in terms of its purpose, function, and features, Gephi still cannot replace
the function or utility of CompositeView.
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(a) Gephi (b) CompositeView

Figure 14. Visual comparison between Gephi and CompositeView using the same SemNet data
set seen in Figures 3 and 4 (approximately 2472 source nodes). The red circles represent the main
input features or nodes for which relationships are being visualized. In this example, visualized
relationships for composite data are much easier to deduce with CompositeView compared to Gephi.

4.2. Limitations

First, CompositeView is ultimately designed to visualize data of a specific format
proposed in Section 2.1.3, which closely resembles SemNet or SemNet 2.0 results. Three
test cases were utilized to stress test CompositeView’s flexibility during development.
For example, test data sets with high-precision edge values produced problems in early
development which have since been resolved.

Second, CompositeView was developed using Windows 10 and Google Chrome, both
of which are common but not ubiquitous. Compatibility testing with Linux, macOS, and a
myriad of browsers has been conducted successfully, and CompositeView’s performance
across these different environments is noted in its documentation. Ultimately, Dash is
the tool that runs the application and determines its compatibility with different browser
and operating system setups. To better understand problems specific to any browser or
operating system, please refer to Dash documentation [48].

Third, CompositeView relies on a multitude of open-source Python packages to gen-
erate the visualization. A reliance on these packages can potentially open up a black
box of errors that cannot be easily resolved. These packages have been very specifically
chosen for their compatibility and ease of use, but their versions should be the same as
those indicated in CompositeView’s documentation (though different package versions are
usually acceptable, given that they are also compatible with the other packages included).
It is recommended to run CompositeView using a virtual environment, if it is not being
externally hosted.

Fourth, CompositeView, in its current state, requires a very small, but non-zero,
amount of Python knowledge to run locally. For the web application to start, the Python
script that specifies the layout, callbacks, elements, and other Dash components needs
to be run. In order to use CompositeView without any prerequisite Python knowledge,
the Dash application that forms the backbone of CompositeView must be hosted using
either cloud-based services or a personal machine (for others to externally use). Dash
documentation exists that describes possible avenues for application hosting [49]; this
has proven to be an easy and effective way to completely remove the necessity of Python
experience for CompositeView users.

4.3. Applications and Future Direction

CompositeView was motivated by and originally developed for examining knowledge
graph relationship ranking results, such as those produced by both SemNet version 1 [8]
and SemNet version 2 [9]. As such, CompositeView enables SemNet users to gain deep
insight from the results in a fraction of the time previously spent parsing through tables.
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As previously noted, CompositeView is not limited to SemNet-related data, and the tool’s
advantages can be translated to other similar network analysis algorithms and pipelines.

4.3.1. Bioinformatics and Network Analysis Applications

Bioinformatics, a field closely adjacent to computational biology, is the science of
storing, disseminating, and analyzing biological data. These data usually come in the
form of DNA and amino acid sequences, and bioinformaticists have been able to conduct
in-depth studies of gene-gene, protein–protein, and gene–protein relationships using net-
work analysis. This leads to a more comprehensive example of a potential application of
CompositeView, in addition to those mentioned in Section 1.2: inFRank, a ranking-based
method for identifying influential genes [50]. Described in Cui et al., the inFRank analysis
method consists of three steps: the creation of a background network, the modification of
this network using biological process-specific data, and, finally, influence score calculations
using inFRank itself. For the main experiment described in Cui et al., the background
network was initially developed using data from KEGG pathways and protein–protein
interaction networks described in Rolland et al. [51], and it was subsequently modified
by weighting edges based on gene expression data, specifically hepatocellular carcinoma
(HCC) RNA-seq data. Once the network was created, inFRank was used to rank the top
20 most influential genes in relation to HCC, with further investigation leading to a po-
tential therapeutic area in the form of five critical genes responsible for mitotic spindle
assembly checkpoint.

The results of the HCC experiment alone could benefit from CompositeView, where
each gene is modeled as a source node, HCC is modeled as a target node, and the inFRank
influence score is the weighted edges; however, Cui et al. also describes a pan-cancer
analysis where gene influence scores for 18 different cancers identified the top 20 influential
genes for each cancer. Many of the influential genes overlap. This pan-cancer analysis is
a perfect example of practical network analysis that could benefit from CompositeView.
Similar to the HCC experiment, each cancer type could be modeled as a target node, each
gene could be modeled as a source node, and the inFRank similarity value could be the
assigned edge weight. The genes that are highly influential for multiple cancers would have
an associated composite score that reflects, in some way, their joint influence. Additionally,
cancers originating from the same or closely related organs or tissues could be grouped
together, and genes that tend to influence the same set of cancers could also be grouped
together. The addition of CompositeView to similar applications, even those not strictly
using inFRank (though performing similar analyses), could be extremely beneficial.

4.3.2. Assessment of Decision Tree, Bayesian Network, and Neural Network Applications

Another area where CompositeView could prove useful is machine learning, specifi-
cally by enhancing the interpretability of common machine learning and statistical analysis
techniques, network-related or otherwise. CompositeView could be used to look at larger
forests and their indices for determining decision splits or their voting patterns [52]. Ad-
ditionally, CompositeView could be used for visualizing Bayesian networks and their
corresponding relationship weights [53]. Finally, CompositeView could be applied to large
neural network pipelines, which tend to become black boxes with layers upon layers of
weights and abstraction [54]. CompositeView, it its current state, may not be able to visu-
alize the results of all possible permutations of the aforementioned analytical techniques;
however, due to its inherent flexibility, CompositeView can be adapted to do so with
minimal required changes by the user.

4.3.3. Other Applications

As shown in the sample data visualizations in Section 3.2, CompositeView can be
adapted to a wide variety of disparate data sets that have a mixture of quantitative and
categorical attributes where the user wishes to visualize connections. The choice of domain
is flexible, as seen in the sample data analyzed in Section 3.2, and can range from healthcare
to business to financial models and more.
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4.3.4. Future Work

CompositeView has the potential to improve in three specific areas: optimization,
flexibility, and accessibility. Optimization will be dataset-dependent. Thus, further exposure
to additional data sets will identify new ways to further optimize speed and efficiency.
Additionally, flexibility, in the form of greater software compatibility, is an important next
step. Currently, CompositeView is designed to work with the Windows 10 operating
system and Google Chrome or Microsoft Edge. Occasional problems involving other
operating systems, specifically macOS, along with some browsers, such as Firefox, were
noted. Increasing compatibility to additional systems and browsers may entail replacing
Dash as the main framework for the application. However, the likely incurred negative
trade-off with replacing Dash would be loss of accessibility. Finally, user accessibility can
be improved through feature expansion and the introduction of a dedicated package and
hosted web application. Additional feature expansion would increase accessibility and
customization for non-Python users. For example, new dropdown components would allow
users to select different combination methods for viewing and adjusting the composite
score without changing the source code. Beyond a hosted web application, packaging
CompositeView with more intuitive modules and code integration features will allow it to
better integrate itself with existing analytical pipelines, network-based or otherwise.

5. Conclusions

In conclusion, with increasingly complex data sets and analysis, there is a need
for improved visualization tools. Data, and the algorithms used to analyze them, are
only as good as the insight they provide. Information overload impedes human data
analysts’ ability to visualize complex results—a problem that motivated the development
of CompositeView. CompositeView is an open-source Python-based application that
integrates with Cytoscape Dash to enable interactive user manipulation of visualized data
and corresponding calculated composite scores. CompositeView was originally built to
interpret the results generated by SemNet 2.0, a novel literature-based discovery tool that
utilizes network analysis and graph theory to gain insight from text-mined biomedical
literature. The addition of CompositeView to the SemNet pipeline was necessary to
visualize and meaningfully interpret complex, multi-target simulation results. However,
CompositeView was generalized to view composite scores for any network or non-network
data set that fits its data input format. The ability to interactively change the complexity
of the graph and calculate corresponding composite scores improves the human analyst’s
ability to expediently visualize, extract, and interpret actionable insight. CompositeView
works under the core tenets of flexibility and accessibility, giving users of the tool the
ability to easily and efficiently adapt it to their respective needs for both network and non-
network data. The present study showed that CompositeView was able to improve analysis
for three disparate case studies: a SemNet 2.0 network simulation for literature-based
discovery, a Human Development Index data set, and the Framingham cardiovascular study.
Improvements to CompositeView are ongoing, with updates pushed to the corresponding
GitHub repository.
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